

18<sup>th</sup> EAN Workshop

# Conclusions & recommendations

"ALARA for Decommissioning and Site Remediation" Institut de Chimie Séparative de Marcoule (ICSM), CEA-Marcoule, France, 11-13 March 2019

Fernand Vermeersch, SCK • CEN, EAN Chairperson Sylvain Andresz, CEPN, EAN Co-ordinator Julie Gilchrist, Public Health England, EAN Secretary



#### Objectives

- Re-visiting the topic of the 1<sup>st</sup> and the 7<sup>th</sup> EAN workshop
- + including site remediation
- Objectives:
  - To present the regulatory background and latest guidance and standards regarding RP
  - To examine the conceptual and the practical aspects of ALARA (nuclear + non-nuclear + legacy sites)
  - To discuss and investigate selected key themes holistic approach and waste



# Contributions to the workshop





## Working Group Topics

WG 1 (a+b) – How to apply the ALARA principle for workers during decommissioning and remediation?

WG 2 – The challenges raised by wastes and how to overcome?

WG 3 – The holistic approach: how to be ALARA in the context of other risks?



#### **Report back**

#### Feedback from the working groups

+ discussions





# **Summary of presentations**



# Session 1

- EAN 1<sup>st</sup> and 7<sup>th</sup> Workshops
- ISOE WG-DECOM (2015)
  - Real feedback experience
  - Strategies for decommissioning (immediate, deferred and entombment)
  - Holistic approach
  - Real data on exposure



# Session 1

- IAEA: publication of guidances + international cooperation projects
- IAEA guidance topics:
  - Decontamination of facilities (inc. non-nuclear)
  - Application of concept of clearance and exemption (being updated)
  - Remediation process guide
  - Management of residues containing NORM
  - Decommissioning risk management (due to be published)
  - End of decommissioning/end-state



# Session 1

- NEA
  - set up a committee on Decommissioning and Legacy Management (2018)
  - organising topical workshop on optimization "rethinking the art of reasonable" (2020)
- Regulatory point of view (BfE):
  - Regulatory framework: specific to decommissioning
  - highlight on Work Permit Procedure



# Session 2 Nuclear

- Practical examples and return of experience
  - Hot cell;
  - Small reactor;
  - Pit7;
  - CIEMAT (portfolio);
  - Full System Decontamination (FSD);
- Site remediation:
  - FBFC
- In planning: Mühlberg NPP



## Session 3&4 non-nuclear, other risks

- Radium Action Plan;
- Gas mantle factory;
- Geological materials;
- Uranium mines;
- Scrap metal processing;
- Risk management at legacy sites and facilities
- Mixed risks:
  - Radioactivity and asbestos
  - NORM facilities (phosphorus,...)
  - PAHs



## **Key themes and topics**



#### Strategies in decommissioning





#### **Optimisation Procedure – Step by Step**

Description of work to be performed Tasks sequence / Work areas / Workplaces Radiological risks analysis

Review of input data needed for the initial dose assessment (doserates, working time,...)

Initial Dose Assessment

**ALARA Analysis** 

ALARA Synthesis Operational follow-up = > to check if the optimisation procedure is well implemented

Follow-up & Feedback experience Performance analysis. Comparison with objectives. Gap & Mishaps analyses. Proposals for corrective actions Analysis of occupational Doses Where? When? Who? How?

Identification of Protective Actions that can (or cannot) be implemented

> Protective Actions Efficiency Impact on doses - Other impacts

Selection of Protective Actions Identification of Decision Criteria Hierarchization of actions

#### Sensitivity Analysis



#### ALARA principle and workers

- Information and experience may be lacking
  - Decommissioning is often a 'first-of-its-kind'
  - Technical expertise is rare resource
- Knowledge transfer
  - Return of experience
  - Operational history (if available)
  - Retention of knowledge
- (preliminary) Characterisation adapted to RP purposes
  - Accurate data needed (avoiding conservatism)



#### ALARA principle and workers

- Radiation protection
  - Differences between operation and decommissioning phases
  - e.g. internal contamination, skills, ...
  - Need for specific training
  - Need for specific tools and techniques
  - New techniques can help (?)
- In the end, data shows that the exposures (collective, individual) have been kept limited



#### Waste strategies

- Strong link between decommissioning strategy and waste strategy
- Mixtures of strategies may assist ALARA
  - i.e. the right approach involves considering a number of methods and the optimum approach may comprise a combination of them
- (preliminary) Characterisation adapted to waste management
- Repository and waste acceptance criteria should be available
  - If not: flexibility should be allowed (e.g. re-packaging)
- Management in practice:
  - Large spectrum of wastes ⇒ large volume/low activity vs. small volume/high activity
  - Mixed-risks wastes
  - Balance between radiological risks and other risks (lowering doses might be detrimental for other risks)



#### Waste strategies

- The generation of waste has associated environmental, social and economic implications:
  - Benefits and drawbacks
- Balance between RP and other topics (lowering doses might be detrimental elsewhere)
- Impacts should be taken into account at the very beginning and weighted to identify the most at stake
  - Transparency of the decision;
  - The importance of time;
  - Avoiding legacy sites and burden for the next generations
  - 'Real' short term doses vs. 'potential' long term doses
- The optimum solution may involve to leave materials on-site (ex. geological materials, uranium mines)



#### How to be ALARA in the context of other risks?

- Decommissioning = multi-risks
  - Conventional, chemical, etc. risks that are now in relation with RP risks
  - Taking "all" risks into account is not possible
- 'Go home safely; now and in the future'
- Proposed methodology:
  - Defining the scope (= putting limits and recognizing them) (regulation provides you the limits)
  - Identify all the risks (HAZID);
  - Evaluating and ranking the risks
  - Management of contradictory risks?
- This should be a dynamic process: adjustment and updates may be needed ("ALARA, a moving target")



#### How to be ALARA in the context of other risks?

- Holistic is a case-by-case approach
  - There is no generic recipe
- This require a flexible attitude
- Evaluating and ranking the different risks (the different worlds?) requires to consider rationale factors but also involve judgment
- Teamwork needed (not only RP), advisory group for management and discussions to reach agreement,



#### Key elements for a holistic approach



RP + integrated risks management



Defining the scope and the limits



Hazards identification



Risk assessment and ranking the risks

- •There are science + judgment
- •Not RP alone: teams to advice on the decision
- •Several dimensions; workers/public/enviro + time



Transparency and documentation of the decision



#### Conclusions

- Strategy
  - Desired endpoint
  - Material and waste flows
  - Risk management (including RP)
  - Time  $\rightarrow$  long term, short term
  - Environment
  - Economic
- Similar approach nuclear and non-nuclear (criteria ?)
- Material and wastes: what are your end solutions? Treatment strategies, acceptance criteria
- Holistic approach better understanding: importance of scope, method, rationale, practical implementation, transparency



#### What are the recommendations?



#### Feedback former workshops, recommendations

Development of tools for dose assessment in complex environments Need for tools to predict internal exposure ALARA and decommisioning 1997, Saclay The holistic approach to risk Risk perception and transparency in decision making 1<sup>st</sup> EAN WS, Improve ALARA beyond the nuclear sector, needs for guidance on and decommissioning in the non-nuclear sector Uniformity in clearance of materials Site remediation, clear criteria and protocols



#### Feedback former workshops, recommendations





# 18<sup>th</sup> Workshop – initial recommendations

- Need to adopt a total risk approach with various trade-offs such as radiological and conventional risks, public and occupational exposure, imposed and voluntary risks, human health and environmental hazards.
- Need to develop tools to introduce transparency and coherence in the decision making, especially where multiple hazard/risks are considered.



# Initial recommendations

- Need for an international database of plants being decommissioned in order to feedback experience and exchange support (role of ISOE?)
- Development of good training standards and resources
- New technologies can be profitable to ALARA (?)
- Waste: cooperation between countries?
- Holistic approach: good dicussions on a proposed methodology



# The way forward

- Conclusions and recommendations will be formulated based on the feedback from the presentations, WG's and discussions and dialogues.
- Published on the EAN website and the newsletter



## Thanks to the Programme Committee

| Mr. Sylvain Andresz         | Nuclear Protection Evaluation Centre (CEPN), France                                         |
|-----------------------------|---------------------------------------------------------------------------------------------|
| Mr. Ignacio Calavia Gimenez | Spanish Nuclear Authority (CSN), ISOE WG-DECOM, Spain                                       |
| Ms. Petra Hansson           | Swedish Radiation Safety Authority (SSM), Sweden                                            |
| Mr. Marc Lahfid             | CEA Marcoule, France                                                                        |
| Mr. Paul Livolsi            | CEA-INSTN, France                                                                           |
| Ms. Julie Gilchrist         | Public Health England (PHE), EAN Secretary, United Kingdom                                  |
| Mr. Bernd Rehs,             | Federal Office for the Safety of Nuclear Waste Management<br>(BfE), Germany                 |
| Mr. John H. Rowat           | IAEA, Decommissioning and Remediation Unit, Austria                                         |
| Ms. Caroline Schieber       | Nuclear Protection Evaluation Centre (CEPN), France, Head of ISOE-European Technical Centre |
| Mr. Nicolas Stritt,         | Federal Office of Public Health (FOPH), EAN Treasurer,<br>Switzerland                       |
| Mr. Ludovic Vaillant        | Nuclear Protection Evaluation Centre (CEPN), France                                         |
| Mr. Fernand Vermeersch      | SCK•CEN, EAN Chairman, Belgium                                                              |



# Thank you for your participation

(.ppt will be on-line (soon) eu-alara.net)



http:

#### EAN 19<sup>th</sup> workshop Innovative ALARA Tools

Jointly organized with the PODIUM project (Horizon 2020, PODIUM, CONCERT)

Athens, 26-29 November 2019 (provisional)

