

Extremity doses in nuclear medicine – influence of new radionuclides

Robert Kollaard, NRG, Netherlands

Ann McCann, St. Vincent's University Hospital, Ireland Nicolas Cherbuin, HUG-CHUV, Switzerland Jérémie Dabin, SCK.CEN, Belgium Peter Covens, VUB, Belgium Alessandra Zorz, Istituto Oncologico Veneto IOV - IRCCS, Italy Lidia Cunha, IsoPor Azores, Portugal

> European Alara Network meeting Vienna 3-Oct-2023

Introduction

- Exposure of the fingers is a major concern in the protection of nuclear medicin (NM) workers
- Large projects (ORAMED, CONRAD) investigating extremity dose in nuclear medicine
 - ORAMED study: about 20% of the exposed workers in NM might receive a maximum extremity (finger) dose of more than 500 mSv
- Developments since 2011:
 - The introduction/increased use of certain radioisotopes
 - A change in the practices
- EURADOS Working Group 12 task (2018) established to:
 - Find out current status of extremity dosimetry in NM
 - Identify and fill in gaps in knowledge influence of new isotopes

Overview of presentation

- Overview of extremity doses in Europe
 - Results of 2 surveys
- Extremity doses evaluated in 2 pilots:
 - PET procedures with Ga-68
 - Therapeutic procedures with Lu-177
- Summary and conclusions

Measured extremity doses in Europe - distribution

National Dose Registries (2018)

(4938 workers, > 5 mSv)

4000 450 Wrist dosimeter 3500 400 10 Ring+wrist dosimeter (NDR) Ring dosimeter 3000 350 300 2500 # Workers # Workers 250 2000 ?? 200 31 1500 2 150 1000 100 500 0 50 119 179 377 143 38 0 6 3703 1030 0 0 <5 5-50 50-150 150-500 >500 <5 5-50 50-150 150-500 >500 Registered dose (mSv/year) Reported dose (extrapolated to mSv/year)

4

EANM Survey (2020)

(780 workers)

Estimated fingertip doses (EANM survey)

ORAMED (2011): potentially 20% of population > 500 mSv EANM survey (2018): potentially 13% > 500 mSv

Pilot results- normalized Ga-68 ring dose

- Pilot in 8 centres (122 Ring/TLD dosimeters)
- Index finger of non-dominant hand
- Period of 1 3 months
- 61 workers monitored

Task	Normalized ring dose (mSv/GBq)
Prep / dispensing/QC	0.23 (0.01 – 3.34)
Patient administration	0.26 (0.06 – 2.86)
All	0.25 (0.01 – 3.34)

-> Normalised ring dose similar to F-18

Fingertip to base sub-study

Fingertip to base of the finger data for the index finger of the non-dominant hand (median, range)

	Ring dose (mSv/month)	Fingertip dose (mSv/month)	Dose ratio
Centre 5 (n = 6)	0.5 (0.2 - 0.8)	1.6 (0.7 - 5.0)	4.3 (1.3 - 10.2)
Centre 8 (n = 4)	1.8 (1.5 - 5.7)	6.9 (3.5 - 25.7)	4.0 (2.1 - 4.7)
Total	0.7 (0.2 - 5.7)	3.0 (0.7 - 25.7)	4.3 (1.3 – 10.2)

Extrapolated annual Ga-68 dose

Ga-68 fraction of total extremity dose

Pilot results - normalized Lu-177 ring dose

- Ring dose multi center pilot
- Index finger of non-dominant hand
- Currently results from 4/11 centers
- 42 measurements

-> Normalised ring dose much lower than Ga-68 or F-18

Lu-177 ring doses (month/year)

Monthly ring doses < 0.4 mSv Annual ring doses < 5 mSv => Fingertip doses < 30 mSv/y?

Next steps for Lu-177 ring dose pilot

- Ring dose data expected from more centers
- > Dosimeter intercomparison to validate dosimeters in pilot for Lu-177

Summary of pilot data

	Ga-68	F-18 [ORAMED]	Lu-177	Y-90 [ORAMED]
Application	PET	PET	Therapy	Therapy
Maximum beta energy	1.9 MeV	0.6 MeV	0.5 MeV	2.3 MeV
Number of measurements	122	306	42	147
Number of centers	8	17	4	16
Median ring dose (mSv/GBq)	0.25	~0.2 [0.8 fingertip]	0.003	~0.8 [3-9 fingertip]
Max. ring dose (mSv/y)	69		~5	
Median ring to fingertip ratio	4.3	4		6
Max. fingertip dose (mSv/y)	295	> 500	~30	> 500

Some words about ALARA

- What protection measures can be taken?
- How well are protection measures implemented in practice?

Impact of protection measures on extremity doses – factors in literature

	Distance		Shielding		Automation	Training
Practice	tools	Gloves	Syringe and/or vial	Cannula		
	Factor	Factor	Factor	Factor	Factor	Factor
^{99m} Tc			4.3 (P+D) and 1.8 (A), 5-10			
¹⁸ F			2.3 (D) and 5.0 (A), 1.3		2-5, 11, 17, 37	3
¹²⁴	3.0			3.2		
⁹⁰ Y RSO	2.2, 27, 53	2.5	5.8	4.9 (D) and 9.6 (A)		
⁹⁰ Y PRRT		5.9 (0.2 vs 0.1 mm Pb)	3.8 (shield & forceps)		1.6, 2.7	
⁹⁰ Y RIT		1.5-2.7 (3 vs 1 latex)	3.1		2.6-2.8	
¹⁷⁷ Lu PRRT					3.1	
¹⁸⁸ Re RE					2.4	

Protection measures in practice – EANM survey

		Frequency of the use of specific protection devices			
Nuclide	Task	Vial shield	Syringe shield	Distance tool	Automated dose dispenser
	Preparation	100%	84%	87%	-
^{99m} Tc	Dispensing	100%	87%	68%	-
	Administration	-	98%	-	-
18-	Dispensing	92%	77%	69%	75%
10 H	Admin <u>i</u> stration	-	81%	-	53%
	Preparation	88%	86%	81%	-
⁶⁸ Ga	Dispensing	88%	70%	79%	21%
	Administration	-	77%	-	21%
¹⁷⁷ Lu	Administration	-	77%	-	44%
⁹⁰ Y	Administration	-	81%	-	17%

Conclusions

- Surveys (national dose registries, EANM):
 - Current extremity doses lower than estimated by ORAMED study,
 - even with increased workload and new radioisotopes
- Ga-68 procedures
 - Normalized extremity doses and ring to fingertip ratio comparable to F-18
 - Median extrapolated annual dose of 5.3 mSv [ring] and 23 mSv [fingertip]
 - Small group (6%) with estimated fingertip dose > 150 mSv
- Lu-177 procedures
 - Extremity doses are relatively low (< 5 mSv/y) compared to other radionuclides
- Recommendations on protection measures (ICRP and ORAMED) part of daily practice
- Further EURADOS work
 - Complete Lu-177 study
 - Skin dose due to contaminations

Publications of this EURADOS taskgroup

J. Radiol. Prot. 43 (2023) 011509

IOP Publishing I	Society for Radiological Protection
V Fublishing	Society for natiological Frotection

J. Radiol. Prot. 41 (2021) 726-738 (13pp)

Journal of Radiological Protection https://doi.org/10.1088/1361-6498/abfff3

Need for harmonisation of extremity dose monitoring in nuclear medicine: results of a survey amongst national dose registries in Europe

> Alexandra Kyriakidou^{1,}*, Jeroen Schlief², Merce Ginjaume³ and Robert Kollaard²

https://doi.org/10.1088/1361-6498/abfff3

IOP Publishing Society for Radiological Protection	Journal of Radiological Protection
J. Radiol. Prot. 41 (2021) R60–R87 (28pp)	https://doi.org/10.1088/1361-6498/ac31a2

Review

Review of extremity dosimetry in nuclear medicine

Robert Kollaard^{1,*}^(*), Alessandra Zorz²^(*), Jérémie Dabin³^(*), Peter Covens⁴^(*), Jennie Cooke⁵, Melissa Crabbé³^(*), Lidia Cunha⁶, Anita Dowling⁷, Mercè Ginjaume⁸^(*) and Leanne McNamara⁹

https://doi.org/10.1088/1361-6498/ac31a2

Journal of Radiological Protection

PAPER

Finger doses due to ⁶⁸Ga-labelled pharmaceuticals in PET departments—results of a multi-centre pilot study

Ann McCann^{1,2,*}⁽⁰⁾, Nicolas Cherbuin³, Peter Covens⁴, Jérémie Dabin⁵⁽⁰⁾, Sigalit Haruz-Waschitz⁶, Lara Gallo⁷, Hanan Datz⁸, Roel Wierts⁹⁽⁰⁾, Malgorzata Wrzesien¹⁰, Alessandra Zorz⁷, Jennie Cooke¹¹, Anita Dowling² and Robert Kollaard¹²⁽⁰⁾

10.1088/1361-6498/acb263

© 2022 EDIZIONI MINERVA MEDICA Online version at https://www.minervamedica.it The Quarterly Journal of Nuclear Medicine and Molecular Imaging 2023 March;67(1):29-36 DOI: 10.23736/S1824-4785.22.03504-X

https://doi.org/10.1088/1361-6498/acb263

ORIGINAL ARTICLE

NEW CHALLENGES IN RADIATION PROTECTION WITH EMERGING THERAPIES

Extremity exposure of nuclear medicine workers: results from an EANM and EURADOS survey

Lídia CUNHA¹*, Jérémie DABIN², Sigrid LEIDE-SVEGBORN³, Alessandra ZORZ⁴, Robert KOLLAARD⁵, Peter COVENS⁶

10.23736/S1824-4785.22.03504-X

Thanks for your interest

- For more information:
- <u>kollaard@nrg.eu</u>

European Radiation Dosimetry Group