

The management of new radionuclides in clinical trials: radiopharmacy perspective

Dra. Rocío Ramos Membrive Radiopharmacist Clínica Universidad de Navarra (Spain)

Universidad de Navarra

Was not the session about the medical physicist role?

Dr. Verónica Morán

Head of the Radiation Protection Clínica Universidad de Navarra, Madrid, Spain

...maybe we can talk about Radiation Protection of new radionuclides from the perspective of who need to apply all the protocols. Since I am a Radiopharmacist...

Radionuclides for Therapeutic Applications Well stablished and new ones.

Table of Contents

Radiation Protection with new isotopes

Working with new radionuclides

01 Radionuclides for Therapeutic Applications

Well stablished and new ones.

01 Radionuclides for Therapeutic Applications: well stablished.

The use of radionuclides in the radiopharmacy field has existed for many years, but the last decades some of them are gaining attention due to the potential for prolonging patient survival across differing cancer types, often with minimal toxicity for healthy tissue. Almost all of them are β-emitters.

01 Radionuclides for Therapeutic Applications: new radionuclides

01 Radionuclides for Therapeutic Applications: actinium-225

Actinium is attached by a chelating moiety integral to the molecule (vector)

This chemistry is similar as the Lutethium or the Yttrium but not exactly the same. The use of different radiometal generally implies the need to use different chelators.

The use of **different chelators may implies changes** in the **the pharmacokinetic** of the **complex** in vivo.

The **isotopes produced during** the **decay** have to be also **chemically compatible** to the **chelator** of the actinium **to remain attached** to the molecule.

4 Clinical Trials in Europe

O1 Radionuclides for Therapeutic Applications: actinium-225

The radioisotope produces during the decay are CHEMICALLY different from the actinium-225. The BIOLOGICAL behavior is different. The capacity of stay chelated of this isotopes is questions. Possible adverse effects for irradiating healthy tissues.

01 Radionuclides for Therapeutic Applications: Radium-224

Radium isotopes has been mainly used to bone-seeking applications

Radium-223 has been the most commonly used for clinical purposes in the last few years.

Usually used in inorganic solution because of the lack of an appropriate chelating agent for coupling of radium to targeting molecules

One proposed strategy is to use nanoparticles or micro particles as carriers. **CaCO**₃ is an inorganic material that is promising for different biomedical applications. Administration in ICU (after cytoreductive surgery)

[²²⁴Ra]RaCaCO₃ (Radspherin®)

2 Clinical Triails in Europe

01 Radionuclides for Therapy Applications: Radium-224

- CaCO₃ insoluble \rightarrow ²²⁴Ra and progenies are trapped
- CaCO₃ dissolves in the peritoneum \rightarrow ²²⁴Ra is released
- $T_{1/2}(^{220}Rn) \sim s \rightarrow Absorbed into the tissue$

- Radioactivity in blood and urine $\approx \mathcal{O}$
- Fluid leaks from catheters or drains → Radioactive waste
- Low probability of ²²⁰Rn release from peritoneum

O2 Radiation Protection

Working with radium-224: our own experience

02 Radiation Protection: working with radium-224

The CaCO₃ increase the solubility in H_2O , liberating the Radium-224 to the solution. During manipulation a contamination or even a vial break could occur, increasing the probability of Radon-220 liberation to the atmosphere

	Dose coefficient mSv/MBq
Ingestion	65
Inhalation	2900

Radiopharmacy and ICU staff (inhalation): % 224Ra released ????????

In order to prevent internal contamination: MANDATORY

Disposable clothing

Coal filter-gas mask

Laminar flow with minimal recirculation

02 Radiation Protection : working with radium-224

02 Radiation Protection: : working with radium-224

Distance (m)	Dose Rate in air (uSv/h)
0,1	20
1,0	0,2

Patient Dose Rate (@ 10 cm): 13,4 10,9 – 16,8) uSv/h

Personal dose estimation

- Radiopharmacy staff (activity preparation):
 - Distance: 20 cm
 - Time: 1h
 - N treatments: 1/week

• Caregivers (ICU staff):

rradiation ris

- Distance: 10 cm
- Time: 24 h (since the treatment administration)
- N treatments: 1/week

1mSv/y

20 mSv/y

13 uSv/treatment \rightarrow 0,65 mSv/year

NO radiation dose limit is exceeded

Thank You!

Do you have any questions?

Dr. Rocío Ramos Membrive Radiopharmacist rramosm@unav.es +34 91 353 19 20 ww.cun.es

